On the Pathwidth of Almost Semicomplete Digraphs
نویسندگان
چکیده
We call a digraph h-semicomplete if each vertex of the digraph has at most h non-neighbors, where a non-neighbor of a vertex v is a vertex u 6= v such that there is no edge between u and v in either direction. This notion generalizes that of semicomplete digraphs which are 0-semicomplete and tournaments which are semicomplete and have no anti-parallel pairs of edges. Our results in this paper are as follows. (1) We give an algorithm which, given an h-semicomplete digraph G on n vertices and a positive integer k, in (h + 2k + 1)n time either constructs a path-decomposition of G of width at most k or concludes correctly that the pathwidth of G is larger than k. (2) We show that there is a function f(k, h) such that every h-semicomplete digraph of pathwidth at least f(k, h) has a semicomplete subgraph of pathwidth at least k. One consequence of these results is that the problem of deciding if a fixed digraph H is topologically contained in a given h-semicomplete digraph G admits a polynomial-time algorithm for fixed h.
منابع مشابه
Almost Minimum Diameter Orientations of Semicomplete Multipartite and Extended Digraphs
An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting exactly one arc between x and y for every pair x 6= y of vertices such that both xy and yx are in D. Almost minimum diameter orientations of certain semicomplete multipartite and extended digraphs are considered, several generalizations of results on orientations of undirected graphs are obtained, some conje...
متن کاملA classification of arc-locally semicomplete digraphs
Tournaments are without doubt the best studied class of directed graphs [3, 6]. The generalizations of tournaments arise in order to extend the well-known results on tournaments to more general classes of directed graphs. Moreover, the knowledge about generalizations of tournaments has allowed to deepen our understanding of tournaments themselves. The semicomplete digraphs, the semicomplete mul...
متن کاملAlmost minimum diameter orientations of semicomplete multipartitite and extended digraphs
An orientation of a digraph D is a spanning subdigraph of D obtained from D by deleting exactly one arc between x and y for every pair x 6= y of vertices such that both xy and yx are in D. Almost minimum diameter orientations of certain semicomplete multipartite and extended digraphs are considered, several generalizations of results on orientations of undirected graphs are obtained, some conje...
متن کاملA classification of locally semicomplete digraphs
In [19] Huang gave a characterization of local tournaments. His characterization involves arc-reversals and therefore may not be easily used to solve other structural problems on locally semicomplete digraphs (where one deals with a fixed locally semicomplete digraph). In this paper we derive a classification of locally semicomplete digraphs which is very useful for studying structural properti...
متن کاملLOCALLY SEMICOMPLETE DIGRAPHS WITH A FACTOR COMPOSED OF k CYCLES
A digraph is locally semicomplete if for every vertex x, the set of in-neighbors as well as the set of out-neighbors of x induce semicomplete digraphs. Let D be a k-connected locally semicomplete digraph with k ≥ 3 and g denote the length of a longest induced cycle of D. It is shown that if D has at least 7(k− 1)g vertices, then D has a factor composed of k cycles; furthermore, if D is semicomp...
متن کامل